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Reaction Kinetics
Irreversible reaction

 is one in which the reactant(s) proceed to 
product(s), but there is no backward reaction,

 aA + bB ⇒ Products
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i.e., the products do not recombine or change to form 
reactants in any appreciable amount.  An example of an 
irreversible reaction is hydrogen and oxygen combining to 
form water in a combustion reaction.  We do not observe 
water spontaneously separating into hydrogen and 
oxygen.  In generalized form, irreversible reactions can 
be represented as:

Begin Chapra “Lecture 2”



Reaction Kinetics: Reversibility
 A reversible reaction

 is one in which the reactant(s) proceed to product(s), 
but the product(s) react at an appreciable rate to 
reform reactant(s).

 aA + bB ↔ pP + qQ
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Many biological reactions fit into this category.  An example of a 
reversible reaction is the formation of adenosine triphosphate 
(ATP) and adenosine diphosphate (ADP).  All living organisms 
use ATP (or a similar compound) to store energy.  As the ATP is 
used it is converted to ADP, the organism then uses food to 
reconvert the ADP to ATP.



Kinetic principles
 Law of Mass Action

 For elementary reactions
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where,
CA = concentration of reactant species A, [moles/liter]
CB = concentration of reactant species B, [moles/liter]
a = stoichiometric coefficient of species A

b = stoichiometric coefficient of species B
k = rate constant, [units are dependent on a and b]

productsbBaA k→+
b
B

a
ACkCrate =



Reaction Kinetics (cont.)
 Reactions of order 

“n” in reactant “c”

 When n=0, we have a 
simple zero-order 
reaction
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Reaction Kinetics (cont.)

 When n=1, we 
have a simple 
first-order 
reaction

 This results in an 
“exponential 
decay”

 Half-life?
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Reaction Kinetics (cont.)

 This equation 
can be 
linearized

 good for 
assessment of 
“k” from data
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dc
dt

kc= − 1



Reaction Kinetics (cont.)

 This results in 
an especially 
wide range in 
rates
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When n=2, we have a simple second-order 
reaction



Reaction Kinetics (cont.)
 Again, the equation can be linearized 

to estimate “k” from data
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Comparison of Reaction Orders
 Curvature: 2nd>1st>zero
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Variable Kinetic Order
 Any reaction order, except n=1
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Reversible reaction kinetics
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For a general reversible reaction: f

b

k  
aA +  bB  pP +  qQ

k  
↔

And the rate law must consider both forward and reverse reactions:

A f A
a

B
b

b P
p

Q
qr  =  k C C  -  k C C

where,
kf = forward rate constant, [units depend on a and b]
kb = backward rate constant, [units depend on a and b]
CP = concentration of product species P, [moles/liter]
CQ = concentration of product species Q, [moles/liter]
p = stoichiometric coefficient of species P
q = stoichiometric coefficient of species Q
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Analysis of Rate Data
 Integral Method

 Least squares regression of linearized form
 Differential Method

 estimate instantaneous rate at known time and 
reactant concentration

 Initial rate Method
 more rigorous, but slow

 Method of Excess
 only when 2 or more reactants are involved
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Stoichiometry and Temp

Stoichiometry
 refer to Chapra or any chemistry book

Temperature
 Arrhenius Equation

 Engineering Approach:
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End
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